k^2-2=43

Simple and best practice solution for k^2-2=43 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2-2=43 equation:



k^2-2=43
We move all terms to the left:
k^2-2-(43)=0
We add all the numbers together, and all the variables
k^2-45=0
a = 1; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·1·(-45)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*1}=\frac{0-6\sqrt{5}}{2} =-\frac{6\sqrt{5}}{2} =-3\sqrt{5} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*1}=\frac{0+6\sqrt{5}}{2} =\frac{6\sqrt{5}}{2} =3\sqrt{5} $

See similar equations:

| (5x+4)(8x-3)=90 | | 3x+15=3(x+ | | 5x-2(9)x=10 | | 5x+4=8x-3•90 | | -3v=42 | | 9+3p=21 | | 8/8-2/5=n | | 19n+18-14n=103 | | (34-19)+15n=60 | | 3x-32=18 | | 1.1^x=22 | | v=1/33.146^216 | | 3x+5(-6x)=9 | | 10(p–2)=50 | | 2(3x-5)+2=0 | | 4x+1/2=3/4x-2/6 | | 28=3+5w | | –4=–2p | | 3m-6=m+10 | | -5y-8=8 | | 37=4q–11 | | 3(-2m–4)+5=11 | | 10-8=p | | 2v+7=–1 | | 9–p2=13 | | 8.5=4+b= | | 8t-3/2t+5=-19 | | 37x−9x=4 | | 3(4x-7)+2=42-8x | | –(5m+7)=2(13–m) | | −2x−23=6x+25 | | 10(p-10)=10 |

Equations solver categories